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r~. On the Odd-Symmetry of Minimum
Phase-Only Perturbations

1. INTRODUCTON

The increasing importance of' phased arrays has been accompanied by consider-

1-5

able interest in phase -only control of array element weights for adaptive nulling 1

6-13
and for null synthesis. Unlike for combined phase and amplitude control, the

problem of imposing nulls in a linear array pattern with phase-only weight control

is nonlinear and cannot be solved exactly analytically. Approximations and/or

numerical techniques must be employed to calculate the required phase perturbations.

A problem of some practical interest in null synthesis is that of imposing nulls

in a given array antenna pattern at a prescribed set of locations in such a way as to

minimize the erfect on the given pattern at other locations, If the given pattern is

real and the weight perturbations are of the element phases only, it is intuitive

that the perturbed pattern should likewise be real and hence that the phase perturba-

fio)ns be odd-symimetric with respect to a phase reference taken at the center of

(Received f'or publication 10 February 1983)

r. In their basic paper on adaptive nuRlinT with phase-shifters. Baird and Rassweiler I

Make an implicit assumption based on intuition that the optimal phase -oni
a iehts for upprssing noise from a set of specified directions are odd-
svnletric. The cuficients in their Eq. (8) are imphiitly assumed to be

mri to the Iariue ribhr oI Refe enmos ci ted above, the will nor t be listed here.
Set, pferenmos s p t it t 15.
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hle atrav. I! rromrrical techttitqus su, l1 as tirl)ljineat p)1)-otfltflinL! are used to

com pute the des i red phase per turi ti j s, thle odd -5 vImetrv propeFt V (-an be used

to reducte the numbher o)r I ndlepende nt unknow ni phases bv a factor of a hall'. Although

hle odd -svmlmet Iv prnpertv o! thre toinimutim phase -oly pertur~rbation., mnay be in -

ilit iv e, neve rthe less a 3oFrf or t lii.-; propeFt v would be des irable.

The prirmripal rh~ject of' this reptort is to prove thle )dd -svtome~kt v proper-ty of

the mini mum) phase -on lv weight perturbat31ions req ui red to i mpose a single null in

arI-al ara antenna patte rn. lite p roof uinfo rtunate[,,.-clues not appear to lend itself

to gene i'oliza tion to the case of no)re than one null. H oweve r, we present

adlditional evidence to support the confjecture that thle mininium phase -only perturha -

i ons ar i ovneral odd-svinmetvic, and it is ho ped that this paper will snerve as

a stepping stone to the finding of a tgeneral proof.0

2.AN X1,I'I S

Consider a linear ar'rav o)I equispacecl isotropicr elements (see Figure 1). The

spacing between thle elements is d and thle phase reference renter is taken to be at

the center of the array. Let a n n 1, 2, N, be the amplitude of the nth array

element, and assume sym-metry of the amplitudes with respect to the reference

(-enter; that is,

a a 11 1. 2, N (1)n N-nn-lP

* Figure 1. Geomnetrv
of Array

L I I.

N N-I N-2 0 3 2 1

Then the array field pattern. 1), (u), is

N Adu
p,)(t10 - a V

n n

where

N -I -( ) .

n 2 (n 1.n 1 2 N
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u =kd sin 0.-.

with

'0.
2 ir

k-

and 0 the angle measured from broadside to the array. The d are odd-symmetric

with respect to the phase reference center; that is.

d = -dN.n = 1,2. N (2)

The pattern p(u) is real because of the symmetry of the Ian and the I dn [
Now suppose it is desired to impose a null in the pattern at the location u u

J On On.
with phase-only perturbations e of the array weights. That is, we would like
to have

n a n u=0. (3)

ni

At the same time we wish to minimize the weight perturbations in a least squares

sense. Since the perturbation of the nth weight is a n(e - 1). we wish to minimize
n

the quantity

N 2 N
i ae2  -en 112 4 a 2 sin 2 (4)

nn (4)n 
n= nI.'

We claim that the desired phase perturbations are then odd-symmetric with respect

to the phase reference center; that is,

On N -n+ 1 n 1, 2. N (5)

so that the resulting field pattern remains real. The procedure we will use to prove

Eq. (5) is first to assume that a set of phase perturbations has been found to satisfy

Eq. (3); then to express these phase perturbations as a sum of two sets of perturba-

tions, one with even-symmetry and the other with odd-symmetry; and finally, to

show that a set of odd-symmetric phase perturbations can be constructed that

satisfies Eq. (3) and yields a lower value of the quantity

-A



N

a asin2(4

.n -

no100

than the starting set of phase perturbations with an even-svmmetric component.

Accordingly, we begin with a set of phase perturbations, 0 n  n 1, 2..... N,n
that satisfy Eq. (3), and let

On One ) )no' n = 1, 2 , N (6)

where

0 1-(0 ±0
.ne 2 + N-n I

n = 1, 2 , _X. :

no 2(n - n 1 2..

I Then

ON-n 1,e ne

n- 1, 2,. (7)

ON-n 1, o -Ono

so that the I ne are the even-synmetric part and Ono the odd-symmtric part

of the phase perturbations Onj. Substituting Eq. (6) in Eq. (3),

N J(One 0no j (1 11.-
a e e 0

nn

- from which it is straightforward to obtain, utilizing the symmetries of Es. (1).
(2), and (7), the equation

N N

lan , 0 One cos(d u On) n au sinO cos (d L I0 0. ( 1
n- ne n no e 1 10

We now note that a purely odd-svnimetric solution 16no0 of Eq. (.') can :,

onstructed by defining 6t to he the solution of the equation

If the nuimb10r- )f menms n he rry is T,,I. :hi- -H. a !h -0' the evnter eVl-r.eirl i .

,f Otr, t.,. z'r sin( e -his elf-ment i h t ae let-'en . 'he ;t:iv. -h

de



cos ne cos(Cdnu + Dno ) cos(d n u1 + 0no), n =1 2, ., N (9)

with the smallest absolute value. (It is clear that a solution of Eq. (9) always

exists since the left hand side of Eq. (9) has magnitude less than or equal to one.)

For the set of phase perturbations so constructed, the terms of the real part of

Eq. (8) remain unchanged and so their sum continues to equal zero, while the

imaginary part of Eq. (8) is zero because all thel0ne I are identically equal to zero.

To show that the set of odd-symmetric phase perturbations obtained by solving

Eq. (9) gives a smaller value of the quantity

N o

a|2 sin 2 n
n =  I . .

than the starting set of phase perturbations with both an even- and odd-symmetric.- "

component, we first note that in view of Eq. (7) it is sufficient to show, taking the

elements of the array by symmetrically located pairs, that

0ne Ono i2 0ne Ono !10• 2i n e n + sin2  2 sin (10) -i "

2 / - "

Using the trigonometric identity

2/
sin 2 (1Cos

and the formulas for the cosine of a sum and difference of two angles, it is simple

to show that the inequality, (10),is equivalent to the inequality

cos ne Cos 0no Cos Ono

In Appendix A we show that the solution 0' of Eq. (9) with the smallest absoluteno
value satisfies the inequality, (11), (strict inequality holds unless dnU1 is an

integral multiple of iT) and thus complete the proof that the minimum phase-only

perturbations that result in an imposed null at a prescribed location in a real pattern

have odd-symmetry with respect to the reference center of the array.

3. D)ISCULSSION- .

The proof of the odd-svmmetrv p)ropertv of the minimum phase-only perturba-

tio.s we have given above is based on the assumption that there is only one null to

II



be imposed in the antenna pattern. If there is more than :ne imposed null, the

procedure of the proof does not appear to be capable of generalization. Suppose,

for example, that nulls are to be imposed at two locations, u i , i =, . Then, .

corresponding to Eq. (8). we now have the pair of equations

N N

a cos 0 cos(d u.+0 + j a sin 0 cos(d u. 0 ) 0n ne n i no E n ne n i no0nn I
i= 1, 2

and there is no way in general that 0 can be found to simultaneously satisfy theno ..
pair of equations n

cos 0 ne c,.' (dn u~ + 0no = cos(d u. + 0 i = 1,2

as required by the proof [see Eq. (9)]. It is true that we can find a different set

of odd-symmetric phase perturbations o' i = 1,2 to satisfy each of the equations

individually, but the nonlinearity of the phase-only nulling equation, Eq. (3), then

does not allow any simple way of combining the two sets of odd-symmetric phase-

only perturbations, one for each null, to give one set of phase perturbations that

will result in nulls at both of the locations simultaneously.

Although the proof we have given cannot be directly generalized to the case of

more than one imposed null, additional evidence can be cited to support the con-

.ecture that the minimum phase-only perturbations required to impose nulls in a

real pattern at a prescribed set of locations have odd-symmetry. For one thing,

Shore and Steyskal 9 have shown that if the assumption of small phase perturbations

is made and used to linearize the phase-only nulling equation

N "jd u.
S j On  n ia e e =0, i-- 1. 2 . . M~,

n=lI n

the resulting set of equations can be solved exactly analytically subject to the con- ,

straint that the weight perturbations be minimized in a generalized least squares

sense. The phases thus obtained are odd-symmetric with respect to the reference

certer located at the center of the array.

Additional evidence to support the odd-symmetry hypothesis comes from the
use of nonlinear programming techniques 14to calculate the minimum phase -only

14. Shore, R. (to be published, 1983), Phase-Only Nulling as a Nonlinear Program-
ming Problem, RAI)C-TR-83-37.

-12,



perturbations required to impose nulls in a pattern at a prescribed set of locations.

It is found that even if no symmetry requirement is placed on the solution so that

there are N unknown phases for an array of N elements, N even, (N - I if N is odd)

the solution obtained has odd-symmetry and is identical to that obtained if the

assumption of odd-symmetry is made at the outset to reduce the number of unknown

phases by a factor of one half. A sample output is given in Appendix B.

In further support, in Appendix C it is shown, using the Lagrange multiplier

method, that the minimum phase perturbations satisfy the equation

N

-.. a sin 0

a property consistent with the odd-symmetry hypothesis in view of the even-

symmetry of the[an]assumed throughout [see Eq. (1)].

Thus it appears likely, although as yet unproven in general, that the odd-

symmetry hypothesis is true, and it is hoped that this report will stimulate further

effort to find a general proof.

13
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Appendix A j
Proof of a Trigonometric Inequality

In Appendix A we prove that the solution u to the equation

cos x cos (z + y) = cos (z + u (A1)

with the smallest absolute value satisfies the inequality

cos x cos V 'S cos u (A2)

with strict inequality holding for all values of z not an integral multiple of V. Let

x and y be arbitrary angles and consider the behavior of u as a function of z for z

in the interval [-7r, 7T]. Defining cos- (0) to lie in the interval 0, 7r], we see that

there are two solutions of Eq. (Al)

u I(z) cos 1 cos x cos (z + y- z (A3a)

and

u2 (z) -cos Icos x cos (z + Y)i - z (A3b)

17
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, - -. -. ' - . ""- - i

u2 (-Z) u (7 -Z)

(A4)

u (-z)= u 2 (7- z)

it suffices to consider the behavior of u1 (z) and u 2 (z) for z in the interval [0, iT].

As z increases from 0 to 7, cos x cos (z + y) varies from cos x cos y to

cos x cos (T + y) -cos x cos y and correspondingly. cos [cos x cos (z + y)] ...-

varies from cos (cos x cos y) to cos (-cos x cos y) = IT- cos (cos x cos y).

Hence u1 (z) varies from cos (cos x cos y) to -cos (cos x cos y) while u 2 (z)

varies from -cos (cos x cos y) to cos (cos x cos y) -2r. Furthermore, since .

d -1 1-cos (x) -II"

differentiating Eqs. (A3a, A3b).

cosxsin (zy) - 1.u . (z) =OS *+

2 1 - Csx Cos (z+ Y)•

But

2 2 2 2 co 2  -.

cos x sin (z + y) cos x-cos x Cos (z+) <

-Cos X Cos (z + y) -cos2 x cos2 (z + y)

with equality if and only if cos2 x 1. Hence if x 0 Nv, N 0, 1, both u W(z)

x = . Hnceif , ~ ITN = . ±1. oth and

u2 (z) are negative over the entire range of z and so u1 (z) and u2 (z) are mono-

tonically decreasing functions of z. It follows that as z increases from 0 to r, uI (Z)
decreases monotonically from cos (Cos x Cos y) to -Cos (cos x cos y) while
u2 W decreases monotonically from -cos I (Cos x Cos y) to c os - I (cos x c os y ) -2wh ,

(see Figure Al). Hence, in the interval 0 's z -ir, u = u () is the solution of

Eq. (AI) with the smallest absolute value and takes on its largest absolute values

at the endpoints of this interval. Since at the endpoints cos u = cos x cos y, it

follows that for all values of z in between, cos x cos y < cos u and so we have

demonstrated inequality (A2). If x= 0-'

181
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Uj (z) =-2, z + y in 3rd and 4th quadrants

-2, z + y in st and 2nd quadrants

0, z -yin 3rd and 4th quadrants

while if x 7T i,

(0, z + yin 3rd and 4th quadrants

UI W
(-2. z y in 1st and 2nd quadrants

S2, z y in 3rd and 4th quadrants

0, z +y in 1st and 2nd quadrants

and the inequality (A2) remains true as before, the only difference being that

equality holds over an interval of z instead of at just the endpoints of the interval

0 1 z -7T. In the interval -ir I z ' 0, we choose u =u 2 Wz and use Eq. (A4) and the
above results for 0 z ir to demonstrate inequality (A 2). (see Figure Al1).
Thus the proof is complete.

J 19



Appendix B
Minimum Phane Perturbations Calculae

by Nonlinear Programming

As an example of the odd-symmetry of the phases obtained as a nonlinear pro-
gramming solution of the minimum phase-only weight perturbation problem, we show

results for a 21-element uniform amplitude array with half-wavelength spacing

The locations of the imposed nulls are 12, 15, and 18 degrees. The nonlinear
programming computer code LPNLP was used. When no symmetry requirement
was imposed on the solution. the phases obtained are (in radians)

X VALUES, X(I).....X(N)
0. 568771ID+00 0. 369075D+00 -0. 275962D+00 -0. 329874D+00 -0. 146 163D)+00
0. 512906D-01 0. 152084D+00 0. 695103D-01 - 0. 890314D-01 -0. 10312313+00
0. 103123D2+00 0. 8903 14D-0 1 -0. 695103D2-01 -0. 152084D2+00 -0. 512906D2-01
0. 146163D2+00 0. 329874D2+00 0. 275962D2+00 -0. 36907SDs-00 -0. 56877112+00

The first two rows are 1l through 5 1 while the second two rows are to12 through

2 V (01 = 0 since the I11th element is the phase reference. ) The odd-symmetry
of the solution is apparent. If odd-symmetry is imposed as a requirement on the

solution from the outset and the number of unknown phases halved, the output is

15. Pierre, D.A., and Lowe, M.J. (1975) Mathematical Programming Via
Augmented Laranians: An Introduction Wthn computer Programs ent "
Addson-Wesley Pubising Co. Reading, Massachusetts.

21



X VALUES, X(I)...., X(N)
0.568771D+00 0.3690750+00 -0. 275962D+00 -0. 329874DtOO -0. 1461631)400
0. 512906D -0 1 0. 15 2084 D+ 00 0. 695103D-01 -0. 8903 14D--01 -0. 1031231) 00

which agrees perfectly with the former solution. The null depths corres pon ding to

these solutions are < -220 dB.

W22



Appendix C
Proof That the Minimum Phase Perturbations

N

Satisfy the Equation E an, sin on =0

In Appendix C we use the Lagrange multiplier technique to show that the mini-7

mum phase perturbations required to place nulls at the set of prescribed pattern

locations uk k = 1, 2. M,%1 have the property that

N

a sin 0.0 (C 1)
n I n n

16
From the theory of constrained optimization, a necessary condition for a

local minimum of a function f(x) subject to a set of equality constraints

C (x) 0. k =1, 2. MA, is that the gradient of f be a linear combination of the

gradients of the constraint functions; that is

17f(x*) 7c(* C2
k k k - (

where x* denotes the value of the vector of variables at the local minimum. The

N.."

multipliers in this linear c'ombination are referred to as Lagrange multipliers and

the superscript * indicates that they are associated with the point x*.

16. letcher, It. ( 198 1) ['ractical Mlethods of Optimization. Volume 2.
Constrained ()ptirnivatinn. JTohn Wiley and Sons, New Yor1 ;.

23



Hlere

N

f~o~(on

and the constraints are (see Eq. (3]

N

a ncos (dnu+O) 0
nn=+O)

k 1, 2,. M (C3)

n a n sin(d k+ O)=O0

Taking the gradients of f and the constraint functions, and equating components in

Eq. (C2) yields

M M

asin ~ Ai Aa sin(d u + ) + E Ukafcos (dfluk-f]n n 4 Lk= IJ =

Summing over n and using Eqs. (C3) then gives Eq. (C 1).

24
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etement6. The p~incpat techn}.ca2 mi,664on aAea.6 ae
communcaton6, etectAomagneic guidance and con-tAot, .&Wt-veittance o6 gtrotrnd and ae~o, pace object6, intettgence data
coZtec-tion and handting, in~o~unation Ay~tem technotogy,
iono,phepic p.'tpagation, zotid .6tate sc.ence6, mic.Ao(wlve
phy,&Zc,6 and etectLonic ueabi&tqt, maintainabitity and

*compatibiltt.
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